The problematic Ψ1 ocean tide

Author:

Ray R D1ORCID,Boy J-P2ORCID,Arbic B K3,Egbert G D4ORCID,Erofeeva S Y4,Petrov L1,Shriver J F5

Affiliation:

1. Geodesy & Geophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

2. CNRS, Université de Strasbourg, Strasbourg, France

3. Department Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA

4. College of Earth, Ocean, & Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA

5. Naval Research Lab, Stennis Space Center, MS 39529, USA

Abstract

SUMMARY Observations of the ψ1 earth tide yield valuable insights into the earth’s free core nutation, especially if the effects of the ψ1 ocean tide can be removed. The ocean tide is extremely small, with amplitudes rarely more than a few millimetres, and developing an accurate model is challenging. Direct observations are inadequate to support a global model. The alternative—numerical simulation—must account for a multitude of possible effects. The ocean tide is forced by the gravitational tidal potential, by pressure loading from atmospheric tides, by seasonal modulation of the nearby K1 constituent, and possibly by non-linear interactions among several other constituents. Here we construct a model of the ψ1 ocean tide which accounts for (or attempts to bound) each of these effects. The radiational component (from atmospheric pressure loading), although relatively small, is complicated by the presence of non-tidal atmospheric variability in the diurnal band. The ocean’s response is dynamic, but there is also high-wavenumber pressure forcing with a near-isostatic response. A general circulation model, forced by both winds and the tidal potential, suggests that annual variability in K1 leads to pronounced ψ1 amplitudes in some marginal seas, especially in the western Pacific.

Funder

National Aeronautics and Space Administration

Office of Naval Research

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference60 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3