Detecting lithospheric discontinuities beneath the Mississippi Embayment using S-wave receiver functions

Author:

Saxena Arushi12ORCID,Langston Charles Adam1

Affiliation:

1. Center for Earthquake Research and Information, University of Memphis, Memphis, TN 38152, USA

2. Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA

Abstract

SUMMARY Identifying upper-mantle discontinuities in the Central and Eastern US is crucial for verifying models of lithospheric thinning and a low-velocity anomaly structure beneath the Mississippi Embayment. In this study, S-wave receiver functions (SRFs) were used to detect lithospheric boundaries in the embayment region. The viability of SRFs in detecting seismic boundaries was tested before computing them using the earthquake data. A careful analysis using a stochastic noise and coda model on the synthetics revealed that a negative velocity contrast could be detected with certainty at low to moderate noise levels after stacking. A total of 31 518 SRFs from 688 earthquakes recorded at 174 seismic stations including the Northern Embayment Lithospheric Experiment, EarthScope Transportable Array and other permanent networks were used in this study. Common depth point stacks of the SRFs in 1° × 1° bins indicated a continuous and broad S-to-P converted phase (Sp) arrival corresponding to a negative velocity contrast at depths between 50 and 100 km. The observed negative Sp phase is interpreted as a mid-lithospheric discontinuity (MLD), and several possible origins of the velocity drop corresponding to the MLD are explored. After quantitative analysis, a combination of temperature, water content and melt content variations are attributed to explain the observed MLD in this study. The observations and interpretations in this study support the previous claims of an MLD in the Central and Eastern US and provide a possible mechanism for its origin.

Funder

University of Memphis

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3