Core–mantle topographic coupling: a parametric approach and implications for the formulation of a triaxial three-layered Earth rotation

Author:

Zhang Huifeng1,Shen Wenbin12

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

Abstract

SUMMARY We propose a parametric approach to the topographic (TOP) coupling between the mantle and outer core for refinement of the latest triaxial three-layered Earth rotation theory. Based on three models of the core–mantle boundary (CMB) topography, we obtain the axial components of the TOP torque as −2.08 × 1019, −2.72 × 1018 and −1.97 × 1017 N m, respectively. Under the frame of the triaxial three-layered Earth rotation theory, we solve the corresponding periods of free core nutation as −(329.83 ± 28.12), −(457.54 ± ∼) and −(428.23 ± 1.09) mean solar days (d), respectively. The other three normal modes, namely, Chandler wobble, inner core wobble and free inner core nutation, are almost not affected by the TOP coupling of the CMB, their period values being 433.24, 2718.69 and 934.02 d, respectively. Calculations show that the TOP torque is highly sensitive to the adopted model of the topography, which is known to be robust. Taking into account the normal modes of the triaxial three-layered Earth rotation, the results of the CMB topography obtained by seismic tomography can be constrained in the future to a certain extent. In this study, considering the TOP coupling with the appropriate topography model, the estimates for the dynamic ellipticity ef of the fluid core lie between 0.0026340 and 0.0026430, values that are 3.56 % higher than the hydrostatic equilibrium value.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3