Comparison of seismic interferometry techniques for the retrieval of seismic body waves in CO2 sequestration monitoring

Author:

Cao Haitao1,Askari Roohollah1

Affiliation:

1. Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, United States

Abstract

Abstract Ambient noise seismic interferometry performed by cross-correlation has been proven to be a potential cost-effective technique for geological studies. To improve the resolution of images created by interferometry, additional techniques using deconvolution and cross-coherence have been introduced. While all three methods have previously been evaluated using surface wave data for shear-wave imaging of the near surface, comparatively little study has been devoted to assess the three methods for the retrieval of body waves in reflection surveys for time-lapse application. Moreover, although the application of seismic interferometry to CO2 sequestration by cross-correlation has been investigated by many researchers, to our knowledge, similar time-lapse studies have not been conducted using deconvolution and cross-coherence methods. We evaluate the three methods of cross-correlation, deconvolution and cross-coherence for the retrieval of phase information contained in virtual seismic records by applying seismic interferometry to synthetic data, using a model reservoir before and after CO2 injection. By examining two approaches of regularization and smoothing factors to suppress spurious reflection events observed on the deconvolution and cross-coherence results, we note that both approaches provide similar results. We investigate noise effects by adding random noise independently at each geophone. Finally, we apply these techniques to field data recorded near the CO2 storage site in Ketzin, Germany. For both our numerical and field data studies, we find that the cross-coherence technique retrieves the phase information of body-wave data more effectively than the cross-correlation and deconvolution techniques, and is less sensitive to uncorrelated noise from shallow sources.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Reference51 articles.

1. Space and time spectra of stationary stochastic waves, with special reference to microtremors;Aki;Bulletin of the Earthquake Research Institute,1957

2. Numerical modeling of ambient-noise seismic interferometry;Arogundade;SEG Technical Program Expanded Abstracts,2016

3. Virtual source: new method for imaging and 4D below complex overburden;Bakulin;SEG Technical Program Expanded Abstracts,2004

4. Virtual source applications to imaging and reservoir monitoring;Bakulin;The Leading Edge,2007

5. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements;Bensen;Geophysical Journal International,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3