Molecular and phenotypical findings of a novel de novo SYNGAP1 gene variant in an 11-year-old Iranian boy with intellectual disability

Author:

Mir Atefeh1,Song Yongjun2,Lee Hane2,Nadeali Zakiye1,Akbarian Fahimeh1,Tabatabaiefar Mohammad Amin134ORCID

Affiliation:

1. Department of Genetics and Molecular Biology, School of Medicine

2. Division of Medical Genetics, 3Billion , Seoul , South Korea

3. Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease

4. GenTArget Corp (GTAC), Deputy of Research and Technology, Isfahan University of Medical Sciences , Isfahan , Iran

Abstract

Abstract Objective Intellectual developmental disorder (IDD) type 5 is an autosomal dominant (AD) disorder and is characterized by intellectual disability (ID), psychomotor developmental delay, variable autism phenotypes, microcephaly, and seizure. IDD can be caused by mutations in the SYNGAP1 gene, which encodes a Ras GTPase-activating protein. This study revealed a novel de novo nonsense variant in SYNGAP1. The identification of such variants is essential for genetic counseling in patients and their families. Methods Exome sequencing implicated the causative variant. Sanger sequencing and cosegregation analyses were used to confirm the variant. Multiple in silico analysis tools were applied to interpret the variant using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. Results The de novo NM_006772.3(SYNGAP1):c.3685C>T variant was identified in an 11-year-old boy with severe intellectual disability, neurodevelopmental delay, speech disorder, ataxia, specific dysmorphic facial features, and aggressive behavior. Conclusion The current study findings expand the existing knowledge of variants in SYNGAP1 that have been previously associated with nonsyndromic intellectual disability and autism, extending the spectrum of phenotypes associated with this gene. The data have implications for genetic diagnosis and counseling in similar phenotypic presentations.

Funder

Medical University of Isfahan, Isfahan, Iran

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3