Multiplex Microsphere PCR (mmPCR) Allows Simultaneous Gram Typing, Detection of Fungal DNA, and Antibiotic Resistance Genes

Author:

Browne Daniel J12ORCID,Liang Fang1,Gartlan Kate H13,Harris Patrick N A4ORCID,Hill Geoffrey R15,Corrie Simon R6,Markey Kate A1357

Affiliation:

1. Division of Immunology, QIMR Berghofer Medical Research Institute , Brisbane , Australia

2. Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University , Cairns, Australia

3. School of Medicine, University of Queensland , Brisbane , Australia

4. Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Royal Brisbane and Women’s Hospital , Brisbane , Australia

5. Division of Hematopoietic Transplantation, Fred Hutchinson Cancer Research Center , Seattle , WA, USA

6. Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash and QLD Nodes, Monash University , Clayton , Australia

7. Memorial Sloan-Kettering Cancer Center , New York, NY , USA

Abstract

Abstract Objective To show the high analytical specificity of our multiplex microsphere polymerase chain reaction (mmPCR) method, which offers the simultaneous detection of both general (eg, Gram type) and specific (eg, Pseudomonas species) clinically relevant genetic targets in a single modular multiplex reaction. Materials and Methods Isolated gDNA of 16S/rRNA Sanger-sequenced and Basic Local Alignment Tool–identified bacterial and fungal isolates were selectively amplified in a custom 10-plex Luminex MagPlex-TAG microsphere-based mmPCR assay. The signal/noise ratio for each reaction was calculated from flow cytometry standard data collected on a BD LSR Fortessa II flow cytometer. Data were normalized to the no-template negative control and the signal maximum. The analytical specificity of the assay was compared to single-plex SYBR chemistry quantitative PCR. Results Both general and specific primer sets were functional in the 10-plex mmPCR. The general Gram typing and pan-fungal primers correctly identified all bacterial and fungal isolates, respectively. The species-specific and antibiotic resistance–specific primers correctly identified the species- and resistance-carrying isolates, respectively. Low-level cross-reactive signals were present in some reactions with high signal/noise primer ratios. Conclusion We found that mmPCR can simultaneously detect specific and general clinically relevant genetic targets in multiplex. These results serve as a proof-of-concept advance that highlights the potential of high multiplex mmPCR diagnostics in clinical practice. Further development of specimen-specific DNA extraction techniques is required for sensitivity testing.

Funder

Queensland Health Junior Clinical Research Fellowship

Prestige Research Training Program

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3