Effects of module truncation on biochemical characteristics and products distribution of a new alginate lyase with two catalytic modules

Author:

Hu Fu1,Li Qian1,Zhu Benwei1,Ni Fang1,Sun Yun1,Yao Zhong1

Affiliation:

1. College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China

Abstract

Abstract In this work, we investigated the functions of structural modules within alginate lyase by truncating an endo-type alginate lyase into two successive catalytic modules. The effects of module deletion on biochemical characteristics and product distributions were further investigated. The N-terminal module (Aly7B-CDI) exhibited no activity toward alginate, polyM or polyG, but the C-terminal module (Aly7B-CDII) retained its activity. The full-length enzyme (Aly7B) and its truncated counterpart (Aly7B-CDII) had similar substrate specificities, but Aly7B-CDII had lower activity. Moreover, the activity of Aly7B was much higher than Aly7B-CDII at 30°C. Aly7B-CDII, however, possessed higher optimal pH and better pH stability than the full-length enzyme. The final degradation products for Aly7B were unsaturated di-, tri- and tetra-oligosaccharides, and those for Aly7B-CDII were unsaturated mono-, di-, tri-, tetra- and penta-oligosaccharides. Therefore, the potential impact of the noncatalytic module Aly7B-CDI on the catalytic module Aly7B-CDII was further elucidated by characterizing Aly7B and its truncations. These data contribute to the functional understanding of these differing modules.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3