Galectin-3 does not interact with RNA directly

Author:

Peltan Egan L12,Riley Nicholas M23ORCID,Flynn Ryan A45ORCID,Roberts David S23,Bertozzi Carolyn R236ORCID

Affiliation:

1. Department of Chemical and Systems Biology, Stanford University School of Medicine , 269 Campus Drive CCSR 4145 Stanford, CA 94305 , United States

2. Sarafan ChEM-H, Stanford University , Stanford ChEM-H Building 290 Jane Stanford Way Stanford, CA 94305 , United States

3. Department of Chemistry, Stanford University , 333 Campus Drive Stanford, CA 94305 , United States

4. Stem Cell Program and Division of Hematology/Oncology , Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02445 , United States

5. Department of Stem Cell and Regenerative Biology, Harvard University , 7 Divinity Ave, Cambridge, MA 02138 , United States

6. Howard Hughes Medical Institute, Stanford University , 279 Campus Drive Room B202 Stanford, CA 94305-5323 , United States

Abstract

Abstract Galectin-3, well characterized as a glycan binding protein, has been identified as a putative RNA binding protein, possibly through participation in pre-mRNA maturation through interactions with splicosomes. Given recent developments with cell surface RNA biology, the putative dual-function nature of galectin-3 evokes a possible non-classical connection between glycobiology and RNA biology. However, with limited functional evidence of a direct RNA interaction, many molecular-level observations rely on affinity reagents and lack appropriate genetic controls. Thus, evidence of a direct interaction remains elusive. We demonstrate that antibodies raised to endogenous human galectin-3 can isolate RNA-protein crosslinks, but this activity remains insensitive to LGALS3 knock-out. Proteomic characterization of anti-galectin-3 IPs revealed enrichment of galectin-3, but high abundance of hnRNPA2B1, an abundant, well-characterized RNA-binding protein with weak homology to the N-terminal domain of galectin-3, in the isolate. Genetic ablation of HNRNPA2B1, but not LGALS3, eliminates the ability of the anti-galectin-3 antibodies to isolate RNA-protein crosslinks, implying either an indirect interaction or cross-reactivity. To address this, we introduced an epitope tag to the endogenous C-terminal locus of LGALS3. Isolation of the tagged galectin-3 failed to reveal any RNA-protein crosslinks. This result suggests that the galectin-3 does not directly interact with RNA and may be misidentified as an RNA-binding protein, at least in HeLa where the putative RNA associations were first identified. We encourage further investigation of this phenomenon employ gene deletions and, when possible, endogenous epitope tags to achieve the specificity required to evaluate potential interactions.

Funder

National Institutes of Health

Howard Hughes Medical Institute

National Science Foundation Graduate Research Fellowship

Stanford ChEM-H Chemistry/Biology Interface Predoctoral Training Program

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3