Polypeptide N-acetylgalactosaminyltransferase 18 retains in endoplasmic reticulum depending on its luminal regions interacting with ER resident UGGT1, PLOD3 and LPCAT1

Author:

Jia Wenjuan1,Zou Xia1,Xu Zhijue1,Bai Lin2,Shan Aidong1,Li Yankun1,Shi Jingjing1,Yang Fang1,Ding Chen2,Narimatsu Hisashi34,Zhang Yan14

Affiliation:

1. Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

2. State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China

3. Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8565, Japan

4. SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, China

Abstract

Abstract Mucin-type O-glycosylation is initiated by the polypeptide: N-acetylgalactosaminyltransferase (ppGalNAc-T) family of enzymes, which consists of 20 members in humans. Among them, unlike other ppGalNAc-Ts located in Golgi apparatus, ppGalNAc-T18 distributes primarily in the endoplasmic reticulum (ER) and non-catalytically regulates ER homeostasis and O-glycosylation. Here, we report the mechanism for ppGalNAc-T18 ER localization and the function of each structural domain of ppGalNAc-T18. By using ppGalNAc-T18 truncation mutants, we revealed that the luminal stem region and catalytic domain of ppGalNAc-T18 are essential for ER localization, whereas the lectin domain and N-glycosylation of ppGalNAc-T18 are not required. In the absence of the luminal region (i.e., stem region, catalytic and lectin domains), the conserved Golgi retention motif RKTK within the cytoplasmic tail combined with the transmembrane domain ensure ER export and Golgi retention, as observed for other Golgi resident ppGalNAc-Ts. Results from coimmunoprecipitation assays showed that the luminal region interacts with ER resident proteins UGGT1, PLOD3 and LPCAT1. Furthermore, flow cytometry analysis showed that the entire luminal region is required for the non-catalytic O-GalNAc glycosylation activity of ppGalNAc-T18. The findings reveal a novel subcellular localization mechanism of ppGalNAc-Ts and provide a foundation to further characterize the function of ppGalNAc-T18 in the ER.

Funder

National Science and Technology Major Project of China

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3