Regulation of trehalose metabolism in insects: from genes to the metabolite window

Author:

Tellis Meenakshi B12ORCID,Kotkar Hemlata M2,Joshi Rakesh S13ORCID

Affiliation:

1. Biochemical Sciences Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra , India

2. Department of Botany, Savitribai Phule Pune University , Ganeshkhind, Pune 411007, Maharashtra , India

3. Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002, Uttar Pradesh , India

Abstract

AbstractTrehalose is a major circulatory sugar in the haemolymph of insects. It provides instant energy and protection against stress. Trehalose metabolism is associated with insect growth and development. The architecture and spatio-temporal expression dynamics of trehalose metabolism and transport genes are key for regulation. These genes are controlled by various transcription factors, largely linked to nutrition, insect development, and metamorphosis. Also, trehalose levels are affected by substrate affinities and modifications of enzymes involved in the pathway. A feedback mechanism involving the precursors and products can regulate trehalose metabolism. Further, the neuroendocrine system controls trehalose levels under normal and stressed conditions by producing different hormones. Hypotrehalosemic hormones work under surplus energy conditions to activate haemolymph trehalose uptake and degradation. In contrast, hypertrehalosemic hormones stimulate trehalose production in the fat body and its transport to the haemolymph. However, trehalose metabolism regulation in insects needs to be studied in detail. This review discusses aspects of trehalose synthesis, transport, and degradation dynamics in developmental transition and stress response. Unraveling the epigenetic factors, transcriptional control and chemical or genetic modulators can provide further insights into the intricate regulation of trehalose in a development- and tissue-specific manner. This molecular information about effectors and regulators of trehalose metabolism can be applied in developing diverse biotechnological applications.

Funder

Council of Scientific and Industrial Research

CSIR-National Chemical Laboratory

Department of Science and Technology, Govt. of India

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3