Unveiling the relationships between diet composition and fermentation parameters response in dual-flow continuous culture system: a meta-analytical approach

Author:

Brandao Virginia L N1ORCID,Faciola Antonio P1ORCID

Affiliation:

1. Department of Animal Sciences, University of Florida, Gainesville, FL

Abstract

AbstractThe objective of this study was to investigate the functional form of the relationship between diet composition (dietary crude protein [CP] and neutral detergent fiber [NDF]) and amount of substrate (fermenter dry matter intake [DMI]) with microbial fermentation end products in a dual-flow continuous culture system. A meta-analysis was performed using data from 75 studies. To derive the linear models, the MIXED procedure was used, and for nonlinear models, the NLMIXED procedure was used. Significance levels to fit the model assumed for fixed and random effects were P ≤ 0.05. Independent variables were dietary NDF, CP, and fermenter DMI, whereas dependent variables were total volatile fatty acids (VFA) concentration; molar proportions of acetate, propionate, and butyrate; true ruminal digestibilities of organic matter (OM), CP, and NDF; ammonia nitrogen (NH3–N) concentration and flows of NH3–N; non-ammonia nitrogen; bacterial-N; dietary-N; and efficiency of microbial protein synthesis (EMPS). Ruminal digestibilities of OM, NDF, and CP decreased as fermenter DMI increased (P < 0.04). Dietary NDF and CP digestibilities were quadratically associated (P < 0.01). Total VFA linearly increased as DMI increased (P < 0.01), exponentially decreased as dietary NDF increased (P < 0.01), and was quadratically associated with dietary CP (P < 0.01), in which total VFA concentration was maximized at 18% dietary CP. Molar proportion of acetate exponentially increased (P < 0.01) as dietary NDF increased. Molar proportion of propionate linearly increased and exponentially decreased as DMI and dietary NDF increased, respectively (P < 0.01). Bacterial-N quadratically increased and dietary-N exponentially increased as DMI increased (P < 0.01). Flows of bacterial-N and dietary-N linearly decreased as dietary NDF increased (P < 0.02), and dietary-N flow was maximized at 18% CP. The EMPS linearly increased as dietary CP increased (P < 0.02) and was not affected by DMI or dietary NDF (P > 0.05). In summary, increasing fermenter DMI increased total VFA concentration and molar proportion of propionate, whereas, dietary NDF increased the molar proportion of acetate. Dietary CP increased bacterial-N flow and was positively associated with NH3–N concentration. Overall, the analysis of this dataset demonstrates evidences that the dual-flow continuous culture system provides valuable estimates of ruminal digestibility, VFA concentration, and nitrogen metabolism.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3