Should I stay or should I go? Complex environments influence the developmental plasticity of flight capacity and flight-related trade-offs

Author:

Glass Jordan R12ORCID,Stahlschmidt Zachary R1

Affiliation:

1. University of the Pacific, Stockton, CA, USA

2. Arizona State University, Tempe, AZ, USA

Abstract

Abstract Complex environments, characterized by co-varying factors (e.g. temperature and food availability) may cause animals to invest resources differentially into fitness-related traits. Thus, experiments manipulating multiple environmental factors concurrently provide valuable insight into the role of the environment in shaping not only important traits (e.g. dispersal capacity or reproduction), but also trait–trait interactions (e.g. trade-offs between traits). We used a multi-factorial design to manipulate variation in temperature (constant 28 °C vs. 28 ± 5 °C daily cycle) and food availability (unlimited vs. intermittent access) throughout development in the sand field cricket (Gryllus firmus). Using a univariate approach, we found that temperature variability and unlimited food availability promoted survival, development, growth, body size and/or reproductive investment. Using principal components as indices of resource allocation strategy, we found that temperature variability and unlimited food reduced investment into flight capacity in females. Thus, we detected a sex-specific trade-off between flight and other life-history traits that was developmentally plastic in response to variation in temperature and food availability. We develop an experimental and statistical framework to reveal shifts in correlative patterns of investment into different life-history traits. This approach can be applied to a range of biological systems to investigate how environmental complexity influences traits and trait trade-offs.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3