TOR kinase, a GPS in the complex nutrient and hormonal signaling networks to guide plant growth and development

Author:

Meng Yanyan12ORCID,Zhang Nan12ORCID,Li Jiatian12,Shen Xuehong12,Sheen Jen3,Xiong Yan12ORCID

Affiliation:

1. College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , China

2. Haixia Institute of Science and Technology, Plant Synthetic Biology Center, Fujian Agriculture and Forestry University , Fuzhou , China

3. Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School , Boston, MA , USA

Abstract

Abstract To survive and sustain growth, sessile plants have developed sophisticated internal signalling networks that respond to various external and internal cues. Despite the central roles of nutrient and hormone signaling in plant growth and development, how hormone-driven processes coordinate with metabolic status remains largely enigmatic. Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, hormones, and stress signals to promote growth in all eukaryotes. Inspired by recent comprehensive systems, chemical, genetic, and genomic studies on TOR in plants, this review discusses a potential role of TOR as a ‘global positioning system’ that directs plant growth and developmental programs both temporally and spatially by integrating dynamic information in the complex nutrient and hormonal signaling networks. We further evaluate and depict the possible functional and mechanistic models for how a single protein kinase, TOR, is able to recognize, integrate, and even distinguish a plethora of positive and negative input signals to execute appropriate and distinct downstream biological processes via multiple partners and effectors.

Funder

National Natural Science Foundation of China

Fujian Agriculture and Forestry University

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3