Aerodynamic shape optimization of H-VAWT blade airfoils considering a wide range of angles of attack

Author:

Wang Quan,Liu Boyang1,Hu Cong1,Wang Fengyun1,Yang Shuyi1

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

Abstract

Abstract The current H-type vertical axis wind turbine (VAWT) airfoils are from horizontal axis wind turbine airfoils or symmetry airfoils that are designed at one angle of attack (such as α = 6°) rather than different angles of attack. As a consequence, it cannot, to a certain extent, increase wind power efficiency. Therefore, an optimal method of H-type VAWT blade airfoils in different ranges of angles of attack is presented. It can be expressed by airfoil integrated function. Then, an optimized mathematical model in which the objective function is the average of tangential force coefficients is established. The particle swarm optimization algorithm coupled with RFOIL program is introduced to optimize the H-type VAWT airfoil profiles with high aerodynamic performance. The optimized results show that the new HVAWT-00153 airfoil is more suitable to VAWTs than the other two new airfoils and NACA-0015 airfoil. Besides, by using computational fluid dynamics technology, the superiority of HVAWT-00153 airfoil over NCAC-0015 airfoil is reviewed. The results indicate that the H-type VAWT with new HVAWT-00153 airfoils could exhibit larger torque coefficients and higher power coefficients than that of the original H-type VAWT with NACA-0015 airfoils. The maximum power coefficient can reach 0.362, increased by 8.45% compared with that of the original one. This study has a good guidance to how to design the H-type VAWT airfoils with high wind energy power.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3