A short-term photovoltaic power interval forecasting method based on fuzzy granular computing and CNN-BiGRU

Author:

Shi Yan1ORCID,Zhang Luxi1,Wang Siteng1,Li Wenjie1,Tong Renjie23

Affiliation:

1. State Grid Inner Mongolia East Power Co., Ltd. Power Supply Service Supervision and Support Center, , Tong Liao, Inner Mongolia 028000, China

2. Nari Technology Co., Ltd. , Nanjing, Jiangsu 211106, China

3. NARI-TECH Nanjing Control Systems Co., Ltd. , Nanjing 211106, China

Abstract

Abstract This paper presents a short-term PV power interval prediction method combining fuzzy information granulation and CNN-BiGRU model. First, historical data of PV power generation is processed using fuzzy information granulation to determine the interval range. Subsequently, a CNN-BiGRU model is constructed, where the CNN module extracts local features of the interval range and the BiGRU module captures temporal patterns. The interval range is then fed into the CNN-BiGRU model for training, which enables accurate prediction of short-term PV power generation intervals. Finally, the predicted power generation interval ranges are given. The experimental results show that this hybrid interval prediction method is first applied to the prediction of short-term PV power scenarios, which fully utilizes the advantages of information granularity to express the data intervals and CNN-BiGRU to learn the complex time series patterns, and realizes the accurate and reliable prediction of short-term PV power intervals. Compared with direct numerical prediction, the method provides an expression of prediction uncertainty, which provides an important reference for the operation decision of PV power plants.

Publisher

Oxford University Press (OUP)

Reference28 articles.

1. Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models;Sarmas;Renew Energy,2023

2. Solar power expansion in China;Smith;Electr Power Syst Res,2016

3. Trends and gaps in photovoltaic power forecasting with machine learning;Alcañiz;Energy Rep,2023

4. Uncertainty management of PV power generation for smart grid;Chen;IEEE Trans Ind Appl,2019

5. A review of solar power forecasting methods;Wang;Renew Sust Energ Rev,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3