Enhanced performance figures of solar cookers through latent heat storage and low-cost booster reflectors

Author:

Cuce Pinar Mert12,Kolayli Sevgi3,Cuce Erdem24

Affiliation:

1. Department of Energy Systems Engineering, Faculty of Engineering, Recep Tayyip Erdogan University, Zihni Derin Campus, Rize 53100, Turkey

2. Low/Zero Carbon Energy Technologies Laboratory, Faculty of Engineering, Recep Tayyip Erdogan University, Zihni Derin Campus, Rize 53100, Turkey

3. Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey

4. Department of Mechanical Engineering, Faculty of Engineering, Recep Tayyip Erdogan University, Zihni Derin Campus, Rize 53100, Turkey

Abstract

Abstract Solar box cookers draw attention of many researchers across the globe as a promising renewable energy application for cooking purposes. Compared to other types available in literature, solar box cookers are more in the centre of interest owing to their simple and low-cost design, emerging thermodynamic performance figures, high durability and reliable cooking processes without any risk of burning food. On the other hand, cooking power and overall thermal performance of solar box cookers are still somewhat challenging to compete with the conventional cooking systems for the climatic conditions with low solar radiation potential like the Black Sea Region of Turkey. Within the scope of this research, a novel solar box cooker is devised, fabricated and tested to overcome the said shortcomings of traditional solar box cookers through natural and recycled materials. Double-glazed structure having 16-mm-thick air between two 6-mm-thick thermally resistive clear glasses is considered for aperture glazing with an area of 0.16 m2. The oven area has a depth of 350 mm, and it is entirely painted matte black for maximum solar absorption. The oven body made of stainless steel sheets is encountered by a latent heat storage medium filled by natural beeswax product, waste of propolis. Propolis is a resinous mixture that is used for protection of beehives, from either climatic changes or diseases. Polyphenols rich in balsamic part of the structure is extracted by alcohol than used for many apitherapic purposes. The remaining pulp or waste is not considered. In this study, it is used as green chemistry agents. It is found that water temperature in the cooking pot is kept over 40°C till very late hours as a consequence of latent heat storage. First figure of merit is determined to be 0.08, and the thermal efficiency of the cooker varies from 7.47 to 4.54%.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3