P3114Protective effect of SOCS1-based therapy in experimental abdominal aortic aneurysm

Author:

Bernal Uribe S1,Lopez-Sanz L1,Melgar A2,La-Manna S2,Jimenez-Castilla L1,Prieto I1,Martin-Ventura J L3,Blanco-Colio L3,Gomez-Guerrero C1

Affiliation:

1. Foundation Jimenez Diaz, Renal, Vascular and Diabetes Research Lab, FIIS-FJD. UAM. CIBERDEM, Madrid, Spain

2. Foundation Jimenez Diaz, Renal, Vascular and Diabetes Research Lab, FIIS-FJD. UAM, Madrid, Spain

3. Foundation Jimenez Diaz, Renal, Vascular and Diabetes Research Lab, FIIS-FJD. UAM. CIBERCV, Madrid, Spain

Abstract

Abstract Introduction Abdominal aortic aneurysm (AAA) is a multifactorial vascular disease characterized by chronic inflammation, oxidative stress and proteolytic activity in the aortic wall, which contribute to extracellular matrix degradation and aortic dilation. Altered expression and activation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway have been implicated in several cardiovascular diseases including atherosclerosis and aneurysm formation. Suppressors of cytokine signaling (SOCS) are key negative regulators of JAK/STAT pathway and have been considered an attractive target for therapeutic intervention. AIM We hypothesize that SOCS1 protein could influence AAA development by inhibiting JAK activity and, consequently, STAT activation and target gene expression. Therefore, this study investigates the effect of a SOCS1-derived synthetic peptide in a rodent model of AAA and in cultured vascular smooth muscle cells (VSMC). Methods Experimental AAA was induced in C57BL/6 mice (males, 12 weeks old) by transient elastase perfusion of the aorta. Mice were randomly divided into control (vehicle, i.p.) and treatment (SOCS1 peptide, 3 mg/kg/day, i.p.) groups. Fourteen days after AAA induction, mice were sacrificed, and aorta segments were collected for histology (n=10/group) and mRNA and protein expression analysis (n=8/group). Results Compared to the AAA control group, SOCS1-treated mice exhibited a significant decrease in aortic diameter (68±6% vs. control; p<0.005) and aortic wall thickness, (67±3% vs. control; p<0.001). Histological analyses of aortic tissues showed a higher content of VSMC (α-actin) along with reduced leukocyte infiltration (macrophages, neutrophils and T-cells) and oxidative stress markers (superoxide anion and 8-hydroxyguanosine) in SOCS1-treated mice. SOCS1 therapy also attenuated the gene expression of inflammatory cytokines (CCL2, CCL5, TNF, IFNγ) and matrix metalloproteinases (MMP2, MMP9) in aortic lesions, and altered the expression levels of macrophage M1 (ArgII, iNOS) and M2 (ArgI, CD206) polarization markers. In vitro experiments in murine VSMC revealed that SOCS1 peptide prevented the expression of cytokines and chemokines induced by non-toxic dose of elastase (5 ug/ml, 24 hours). Effects of SOCS1 treatment were accompanied by a reduction in STAT1 and STAT3 phosphorylation and gene expression, both in AAA lesions and cultured VSMC. Conclusion Our results suggest that SOCS1 peptide presents protective effects in experimental AAA by suppressing JAK/STAT pathway-mediated inflammation. Acknowledgement/Funding MINECO-FEDER (SAF2015-63696-R), ISCII (FIS-FEDER PI17/01495), Spanish Society of Arteriosclerosis.

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3