Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations

Author:

Tennant Peter W G123ORCID,Murray Eleanor J4,Arnold Kellyn F12ORCID,Berrie Laurie156,Fox Matthew P47,Gadd Sarah C15,Harrison Wendy J12ORCID,Keeble Claire1,Ranker Lynsie R4,Textor Johannes8ORCID,Tomova Georgia D123,Gilthorpe Mark S123,Ellison George T H129

Affiliation:

1. Leeds Institute for Data Analytics, University of Leeds, Leeds, UK

2. Faculty of Medicine and Health, University of Leeds, Leeds, UK

3. Alan Turing Institute, British Library, London, UK

4. Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA

5. School of Geography, University of Leeds, Leeds, UK

6. School of GeoSciences, University of Edinburgh, Edinburgh, UK

7. Department of Global Health, Boston University, Boston, MA, USA

8. Department of Tumour Immunology, Radboud University Medical Center, Nijmegen, The Netherlands

9. Centre for Data Innovation, Faculty of Science and Technology, University of Central Lancashire, Preston, UK

Abstract

Abstract Background Directed acyclic graphs (DAGs) are an increasingly popular approach for identifying confounding variables that require conditioning when estimating causal effects. This review examined the use of DAGs in applied health research to inform recommendations for improving their transparency and utility in future research. Methods Original health research articles published during 1999–2017 mentioning ‘directed acyclic graphs’ (or similar) or citing DAGitty were identified from Scopus, Web of Science, Medline and Embase. Data were extracted on the reporting of: estimands, DAGs and adjustment sets, alongside the characteristics of each article’s largest DAG. Results A total of 234 articles were identified that reported using DAGs. A fifth (n = 48, 21%) reported their target estimand(s) and half (n = 115, 48%) reported the adjustment set(s) implied by their DAG(s). Two-thirds of the articles (n = 144, 62%) made at least one DAG available. DAGs varied in size but averaged 12 nodes [interquartile range (IQR): 9–16, range: 3–28] and 29 arcs (IQR: 19–42, range: 3–99). The median saturation (i.e. percentage of total possible arcs) was 46% (IQR: 31–67, range: 12–100). 37% (n = 53) of the DAGs included unobserved variables, 17% (n = 25) included ‘super-nodes’ (i.e. nodes containing more than one variable) and 34% (n = 49) were visually arranged so that the constituent arcs flowed in the same direction (e.g. top-to-bottom). Conclusion There is substantial variation in the use and reporting of DAGs in applied health research. Although this partly reflects their flexibility, it also highlights some potential areas for improvement. This review hence offers several recommendations to improve the reporting and use of DAGs in future research.

Funder

Economic and Social Research Council

Medical Research Council

The Alan Turing Institute

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

Cited by 424 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3