De Novo Genome Assemblies From Two Indigenous Americans from Arizona Identify New Polymorphisms in Non-Reference Sequences

Author:

Köroğlu Çiğdem1ORCID,Chen Peng1ORCID,Traurig Michael1ORCID,Altok Serdar1ORCID,Bogardus Clifton1ORCID,Baier Leslie J1ORCID

Affiliation:

1. Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Phoenix, AZ 85004 , USA

Abstract

Abstract There is a collective push to diversify human genetic studies by including underrepresented populations. However, analyzing DNA sequence reads involves the initial step of aligning the reads to the GRCh38/hg38 reference genome which is inadequate for non-European ancestries. In this study, using long-read sequencing technology, we constructed de novo genome assemblies from two indigenous Americans from Arizona (IAZ). Each assembly included ∼17 Mb of DNA sequence not present [nonreference sequence (NRS)] in hg38, which consists mostly of repeat elements. Forty NRSs totaling 240 kb were uniquely anchored to the hg38 primary assembly generating a modified hg38-NRS reference genome. DNA sequence alignment and variant calling were then conducted with whole-genome sequencing (WGS) sequencing data from 387 IAZ using both the hg38 and modified hg38-NRS reference maps. Variant calling with the hg38-NRS map identified ∼50,000 single-nucleotide variants present in at least 5% of the WGS samples which were not detected with the hg38 reference map. We also directly assessed the NRSs positioned within genes. Seventeen NRSs anchored to regions including an identical 187 bp NRS found in both de novo assemblies. The NRS is located in HCN2 79 bp downstream of Exon 3 and contains several putative transcriptional regulatory elements. Genotyping of the HCN2-NRS revealed that the insertion is enriched in IAZ (minor allele frequency = 0.45) compared to other reference populations tested. This study shows that inclusion of population-specific NRSs can dramatically change the variant profile in an underrepresented ethnic groups and thereby lead to the discovery of previously missed common variations.

Funder

Intramural Research Program of the NIDDK, NIH

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3