Optimal sequencing budget allocation for trajectory reconstruction of single cells

Author:

Moriel Noa1,Memet Edvin2,Nitzan Mor134

Affiliation:

1. School of Computer Science and Engineering, The Hebrew University of Jerusalem , Jerusalem 9190401, Israel

2. Department of Physics, Harvard University , Cambridge, MA 02138, United States

3. Racah Institute of Physics, The Hebrew University of Jerusalem , Jerusalem 9190401, Israel

4. Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem 9112102, Israel

Abstract

Abstract Background Charting cellular trajectories over gene expression is key to understanding dynamic cellular processes and their underlying mechanisms. While advances in single-cell RNA-sequencing technologies and computational methods have pushed forward the recovery of such trajectories, trajectory inference remains a challenge due to the noisy, sparse, and high-dimensional nature of single-cell data. This challenge can be alleviated by increasing either the number of cells sampled along the trajectory (breadth) or the sequencing depth, i.e. the number of reads captured per cell (depth). Generally, these two factors are coupled due to an inherent breadth-depth tradeoff that arises when the sequencing budget is constrained due to financial or technical limitations. Results Here we study the optimal allocation of a fixed sequencing budget to optimize the recovery of trajectory attributes. Empirical results reveal that reconstruction accuracy of internal cell structure in expression space scales with the logarithm of either the breadth or depth of sequencing. We additionally observe a power law relationship between the optimal number of sampled cells and the corresponding sequencing budget. For linear trajectories, non-monotonicity in trajectory reconstruction across the breadth-depth tradeoff can impact downstream inference, such as expression pattern analysis along the trajectory. We demonstrate these results for five single-cell RNA-sequencing datasets encompassing differentiation of embryonic stem cells, pancreatic beta cells, hepatoblast and multipotent hematopoietic cells, as well as induced reprogramming of embryonic fibroblasts into neurons. By addressing the challenges of single-cell data, our study offers insights into maximizing the efficiency of cellular trajectory analysis through strategic allocation of sequencing resources.

Funder

Israeli Council for Higher Education

Center for Interdisciplinary Data Science Research

Hebrew University of Jerusalem

Israel Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3