iEnhancer-XG: interpretable sequence-based enhancers and their strength predictor

Author:

Cai Lijun1,Ren Xuanbai1,Fu Xiangzheng1ORCID,Peng Li2,Gao Mingyu1,Zeng Xiangxiang1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, 410082 Changsha, Hunan, China

2. College of Computer Science and Engineering, Hunan University of Science and Technology, 411103 XiangTan, China

Abstract

Abstract Motivation Enhancers are non-coding DNA fragments with high position variability and free scattering. They play an important role in controlling gene expression. As machine learning has become more widely used in identifying enhancers, a number of bioinformatic tools have been developed. Although several models for identifying enhancers and their strengths have been proposed, their accuracy and efficiency have yet to be improved. Results We propose a two-layer predictor called ‘iEnhancer-XG.’ It comprises a one-layer predictor (for identifying enhancers) and a second classifier (for their strength) and uses ‘XGBoost’ as a base classifier and five feature extraction methods, namely, k-Spectrum Profile, Mismatch k-tuple, Subsequence Profile, Position-specific scoring matrix (PSSM) and Pseudo dinucleotide composition (PseDNC). Each method has an independent output. We place the feature vector matrix into the ensemble learning for fusion. This experiment involves the method of ‘SHapley Additive explanations’ to provide interpretability for the previous black box machine learning methods and improve their credibility. The accuracies of the ensemble learning method are 0.811 (first layer) and 0.657 (second layer). The rigorous 10-fold cross-validation confirms that the proposed method is significantly better than existing technologies. Availability and implementation The source code and dataset for the enhancer predictions have been uploaded to https://github.com/jimmyrate/ienhancer-xg. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Basic Research Program of Science and Technology of Shenzhen

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Hunan province

Scientific Research Project of Hunan Education Department

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3