Selfish: discovery of differential chromatin interactions via a self-similarity measure

Author:

Ardakany Abbas Roayaei1,Ay Ferhat23,Lonardi Stefano1ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, USA

2. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, UC San Diego, La Jolla, CA, USA

3. School of Medicine, Department of Pediatrics, UC San Diego, La Jolla, CA, USA

Abstract

AbstractMotivationHigh-throughput conformation capture experiments, such as Hi-C provide genome-wide maps of chromatin interactions, enabling life scientists to investigate the role of the three-dimensional structure of genomes in gene regulation and other essential cellular functions. A fundamental problem in the analysis of Hi-C data is how to compare two contact maps derived from Hi-C experiments. Detecting similarities and differences between contact maps are critical in evaluating the reproducibility of replicate experiments and for identifying differential genomic regions with biological significance. Due to the complexity of chromatin conformations and the presence of technology-driven and sequence-specific biases, the comparative analysis of Hi-C data is analytically and computationally challenging.ResultsWe present a novel method called Selfish for the comparative analysis of Hi-C data that takes advantage of the structural self-similarity in contact maps. We define a novel self-similarity measure to design algorithms for (i) measuring reproducibility for Hi-C replicate experiments and (ii) finding differential chromatin interactions between two contact maps. Extensive experimental results on simulated and real data show that Selfish is more accurate and robust than state-of-the-art methods.Availability and implementationhttps://github.com/ucrbioinfo/Selfish

Funder

US National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference42 articles.

1. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts;Ay;Genome Res,2014

2. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. B,1995

3. Multiscale 3D genome rewiring during mouse neural development;Bonev;Cell,2017

4. CHiCAGO: robust detection of DNA looping interactions in capture Hi-C data;Cairns;Genome Biol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3