DeepCDR: a hybrid graph convolutional network for predicting cancer drug response

Author:

Liu Qiao12,Hu Zhiqiang23,Jiang Rui12,Zhou Mu4

Affiliation:

1. Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics, Beijing National Research Center, Information Science and Technology, Center for Synthetic and Systems Biology

2. Department of Automation, Tsinghua University, Beijing 100084, China

3. SenseTime Research, Shanghai 200233, China

4. SenseBrain Research, San Jose, CA 95131, USA

Abstract

Abstract Motivation Accurate prediction of cancer drug response (CDR) is challenging due to the uncertainty of drug efficacy and heterogeneity of cancer patients. Strong evidences have implicated the high dependence of CDR on tumor genomic and transcriptomic profiles of individual patients. Precise identification of CDR is crucial in both guiding anti-cancer drug design and understanding cancer biology. Results In this study, we present DeepCDR which integrates multi-omics profiles of cancer cells and explores intrinsic chemical structures of drugs for predicting CDR. Specifically, DeepCDR is a hybrid graph convolutional network consisting of a uniform graph convolutional network and multiple subnetworks. Unlike prior studies modeling hand-crafted features of drugs, DeepCDR automatically learns the latent representation of topological structures among atoms and bonds of drugs. Extensive experiments showed that DeepCDR outperformed state-of-the-art methods in both classification and regression settings under various data settings. We also evaluated the contribution of different types of omics profiles for assessing drug response. Furthermore, we provided an exploratory strategy for identifying potential cancer-associated genes concerning specific cancer types. Our results highlighted the predictive power of DeepCDR and its potential translational value in guiding disease-specific drug design. Availability and implementation DeepCDR is freely available at https://github.com/kimmo1019/DeepCDR. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Tsinghua-Fuzhou Institute for Data Technology and Shanghai Municipal Science and Technology Major Project

Institute for Data Science of Tsinghua University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3