A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data

Author:

Trinh Hung-Cuong1,Kwon Yung-Keun2

Affiliation:

1. Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh 758307, Vietnam

2. Department of IT Convergence, University of Ulsan, Ulsan 680-749, Korea

Abstract

Abstract Motivation It is a challenging problem in systems biology to infer both the network structure and dynamics of a gene regulatory network from steady-state gene expression data. Some methods based on Boolean or differential equation models have been proposed but they were not efficient in inference of large-scale networks. Therefore, it is necessary to develop a method to infer the network structure and dynamics accurately on large-scale networks using steady-state expression. Results In this study, we propose a novel constrained genetic algorithm-based Boolean network inference (CGA-BNI) method where a Boolean canalyzing update rule scheme was employed to capture coarse-grained dynamics. Given steady-state gene expression data as an input, CGA-BNI identifies a set of path consistency-based constraints by comparing the gene expression level between the wild-type and the mutant experiments. It then searches Boolean networks which satisfy the constraints and induce attractors most similar to steady-state expressions. We devised a heuristic mutation operation for faster convergence and implemented a parallel evaluation routine for execution time reduction. Through extensive simulations on the artificial and the real gene expression datasets, CGA-BNI showed better performance than four other existing methods in terms of both structural and dynamics prediction accuracies. Taken together, CGA-BNI is a promising tool to predict both the structure and the dynamics of a gene regulatory network when a highest accuracy is needed at the cost of sacrificing the execution time. Availability and implementation Source code and data are freely available at https://github.com/csclab/CGA-BNI. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

2021 Research Fund

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3