On the feasibility of deep learning applications using raw mass spectrometry data

Author:

Cadow Joris1ORCID,Manica Matteo1ORCID,Mathis Roland1ORCID,Guo Tiannan2ORCID,Aebersold Ruedi3ORCID,Rodríguez Martínez María1ORCID

Affiliation:

1. Cognitive Computing & Industry Solutions, IBM Research Europe - Zurich, Rueschlikon 8803, Switzerland

2. Institute of Basic Medical Sciences, School of Life Science, Westlake University, Hangzhou 310024, China

3. Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich 8093, Switzerland

Abstract

Abstract Summary In recent years, SWATH-MS has become the proteomic method of choice for data-independent–acquisition, as it enables high proteome coverage, accuracy and reproducibility. However, data analysis is convoluted and requires prior information and expert curation. Furthermore, as quantification is limited to a small set of peptides, potentially important biological information may be discarded. Here we demonstrate that deep learning can be used to learn discriminative features directly from raw MS data, eliminating hence the need of elaborate data processing pipelines. Using transfer learning to overcome sample sparsity, we exploit a collection of publicly available deep learning models already trained for the task of natural image classification. These models are used to produce feature vectors from each mass spectrometry (MS) raw image, which are later used as input for a classifier trained to distinguish tumor from normal prostate biopsies. Although the deep learning models were originally trained for a completely different classification task and no additional fine-tuning is performed on them, we achieve a highly remarkable classification performance of 0.876 AUC. We investigate different types of image preprocessing and encoding. We also investigate whether the inclusion of the secondary MS2 spectra improves the classification performance. Throughout all tested models, we use standard protein expression vectors as gold standards. Even with our naïve implementation, our results suggest that the application of deep learning and transfer learning techniques might pave the way to the broader usage of raw mass spectrometry data in real-time diagnosis. Availability and implementation The open source code used to generate the results from MS images is available on GitHub: https://ibm.biz/mstransc. The raw MS data underlying this article cannot be shared publicly for the privacy of individuals that participated in the study. Processed data including the MS images, their encodings, classification labels and results can be accessed at the following link: https://ibm.box.com/v/mstc-supplementary. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Union’s Horizon 2020 Research and Innovation Program

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference42 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3