Protein language models meet reduced amino acid alphabets

Author:

Ieremie Ioan1ORCID,Ewing Rob M2,Niranjan Mahesan1

Affiliation:

1. Vision, Learning & Control Group, University of Southampton , Southampton SO17 1BJ, United Kingdom

2. Biological Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom

Abstract

Abstract Motivation Protein language models (PLMs), which borrowed ideas for modelling and inference from natural language processing, have demonstrated the ability to extract meaningful representations in an unsupervised way. This led to significant performance improvement in several downstream tasks. Clustering amino acids based on their physical–chemical properties to achieve reduced alphabets has been of interest in past research, but their application to PLMs or folding models is unexplored. Results Here, we investigate the efficacy of PLMs trained on reduced amino acid alphabets in capturing evolutionary information, and we explore how the loss of protein sequence information impacts learned representations and downstream task performance. Our empirical work shows that PLMs trained on the full alphabet and a large number of sequences capture fine details that are lost in alphabet reduction methods. We further show the ability of a structure prediction model(ESMFold) to fold CASP14 protein sequences translated using a reduced alphabet. For 10 proteins out of the 50 targets, reduced alphabets improve structural predictions with LDDT-Cα differences of up to 19%. Availability and implementation Trained models and code are available at github.com/Ieremie/reduced-alph-PLM.

Funder

Engineering and Physical Sciences Research Council

EPSRC

Artificial and Augmented Intelligence for Automated Scientific Discovery

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3