Seeding with minimized subsequence

Author:

Li Xiang1,Shi Qian1,Chen Ke1,Shao Mingfu12

Affiliation:

1. Department of Computer Science and Engineering, The Pennsylvania State University, University Park , PA 16802, USA

2. Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park , PA 16802, USA

Abstract

Abstract Motivation Modern methods for computation-intensive tasks in sequence analysis (e.g. read mapping, sequence alignment, genome assembly, etc.) often first transform each sequence into a list of short, regular-length seeds so that compact data structures and efficient algorithms can be employed to handle the ever-growing large-scale data. Seeding methods using kmers (substrings of length k) have gained tremendous success in processing sequencing data with low mutation/error rates. However, they are much less effective for sequencing data with high error rates as kmers cannot tolerate errors. Results We propose SubseqHash, a strategy that uses subsequences, rather than substrings, as seeds. Formally, SubseqHash maps a string of length n to its smallest subsequence of length k, k < n, according to a given order overall length-k strings. Finding the smallest subsequence of a string by enumeration is impractical as the number of subsequences grows exponentially. To overcome this barrier, we propose a novel algorithmic framework that consists of a specifically designed order (termed ABC order) and an algorithm that computes the minimized subsequence under an ABC order in polynomial time. We first show that the ABC order exhibits the desired property and the probability of hash collision using the ABC order is close to the Jaccard index. We then show that SubseqHash overwhelmingly outperforms the substring-based seeding methods in producing high-quality seed-matches for three critical applications: read mapping, sequence alignment, and overlap detection. SubseqHash presents a major algorithmic breakthrough for tackling the high error rates and we expect it to be widely adapted for long-reads analysis. Availability and implementation SubseqHash is freely available at https://github.com/Shao-Group/subseqhash.

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3