Protlego: a Python package for the analysis and design of chimeric proteins

Author:

Ferruz Noelia1,Noske Jakob1,Höcker Birte1

Affiliation:

1. Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany

Abstract

Abstract Motivation Duplication and recombination of protein fragments have led to the highly diverse protein space that we observe today. By mimicking this natural process, the design of protein chimeras via fragment recombination has proven experimentally successful and has opened a new era for the design of customizable proteins. The in silico building of structural models for these chimeric proteins, however, remains a manual task that requires a considerable degree of expertise and is not amenable for high-throughput studies. Energetic and structural analysis of the designed proteins often require the use of several tools, each with their unique technical difficulties and available in different programming languages or web servers. Results We implemented a Python package that enables automated, high-throughput design of chimeras and their structural analysis. First, it fetches evolutionarily conserved fragments from a built-in database (also available at fuzzle.uni-bayreuth.de). These relationships can then be represented via networks or further selected for chimera construction via recombination. Designed chimeras or natural proteins are then scored and minimized with the Charmm and Amber forcefields and their diverse structural features can be analyzed at ease. Here, we showcase Protlego’s pipeline by exploring the relationships between the P-loop and Rossmann superfolds, building and characterizing their offspring chimeras. We believe that Protlego provides a powerful new tool for the protein design community. Availability and implementation Protlego runs on the Linux platform and is freely available at (https://hoecker-lab.github.io/protlego/) with tutorials and documentation. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Research Council

Volkswagenstiftung

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3