Galaxy Helm chart: a standardized method for deploying production Galaxy servers

Author:

Goonasekera Nuwan1ORCID,Mahmoud Alexandru2,Suderman Keith3,Afgan Enis3

Affiliation:

1. Australian BioCommons, University of Melbourne , Melbourne, VIC 3052, Australia

2. Channing Division of Network Medicine, Harvard Medical School , Boston, MA 02115, United States

3. Department of Biology, Johns Hopkins University , Baltimore, MD 21210, United States

Abstract

Abstract Motivation The Galaxy application is a popular open-source framework for data intensive sciences, counting thousands of monthly users across more than 100 public servers. To support a growing number of users and a greater variety of use cases, the complexity of a production-grade Galaxy installation has also grown, requiring more administration effort. There is a need for a rapid and reproducible Galaxy deployment method that can be maintained at high-availability with minimal maintenance. Results We describe the Galaxy Helm chart that codifies all elements of a production-grade Galaxy installation into a single package. Deployable on Kubernetes clusters, the chart encapsulates supporting software services and implements the best-practices model for running Galaxy. It is also the most rapid method available for deploying a scalable, production-grade Galaxy instance on one’s own infrastructure. The chart is highly configurable, allowing systems administrators to swap dependent services if desired. Notable uses of the chart include on-demand, fully-automated deployments on AnVIL, providing training infrastructure for the Bioconductor project, and as the AWS-recommended solution for running Galaxy on the Amazon cloud. Availability and implementation The source code for Galaxy Helm is available at https://github.com/galaxyproject/galaxy-helm, the corresponding Helm package at https://github.com/CloudVE/helm-charts, and the required Galaxy container image https://github.com/galaxyproject/galaxy-docker-k8s.

Funder

NIH

NSF

Publisher

Oxford University Press (OUP)

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3