Unified methods for feature selection in large-scale genomic studies with censored survival outcomes

Author:

Spirko-Burns Lauren1,Devarajan Karthik2ORCID

Affiliation:

1. Department of Statistical Science, Temple University

2. Department of Biostatistics & Bioinformatics, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA

Abstract

Abstract Motivation One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes which provide insight into the disease process. With rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of tens of thousands of genes and proteins resulting in enormous datasets where the number of genomic features is far greater than the number of subjects. Methods based on univariate Cox regression are often used to select genomic features related to survival outcome; however, the Cox model assumes proportional hazards (PH), which is unlikely to hold for each feature. When applied to genomic features exhibiting some form of non-proportional hazards (NPH), these methods could lead to an under- or over-estimation of the effects. We propose a broad array of marginal screening techniques that aid in feature ranking and selection by accommodating various forms of NPH. First, we develop an approach based on Kullback–Leibler information divergence and the Yang–Prentice model that includes methods for the PH and proportional odds (PO) models as special cases. Next, we propose R2 measures for the PH and PO models that can be interpreted in terms of explained randomness. Lastly, we propose a generalized pseudo-R2 index that includes PH, PO, crossing hazards and crossing odds models as special cases and can be interpreted as the percentage of separability between subjects experiencing the event and not experiencing the event according to feature measurements. Results We evaluate the performance of our measures using extensive simulation studies and publicly available datasets in cancer genomics. We demonstrate that the proposed methods successfully address the issue of NPH in genomic feature selection and outperform existing methods. Availability and implementation R code for the proposed methods is available at github.com/lburns27/Feature-Selection. Contact karthik.devarajan@fccc.edu Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

National Cancer Institute

National Science Foundation

US Army

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference43 articles.

1. Review of survival analysis published in cancer journals;Altman;Br. J. Cancer,1995

2. Model misspecification in proportional hazards regression;Anderson;Biometrika,1995

3. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc,1995

4. Analysis of survival data by the proportional odds model;Bennett;Stat. Med,1983

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3