YeastMate: neural network-assisted segmentation of mating and budding events in Saccharomyces cerevisiae

Author:

Bunk David1ORCID,Moriasy Julian1,Thoma Felix1,Jakubke Christopher1,Osman Christof1,Hörl David1ORCID

Affiliation:

1. Faculty of Biology, Ludwig-Maximilians-Universität München , 82152 Planegg-Martinsried, Germany

Abstract

Abstract Summary Here, we introduce YeastMate, a user-friendly deep learning-based application for automated detection and segmentation of Saccharomyces cerevisiae cells and their mating and budding events in microscopy images. We build upon Mask R-CNN with a custom segmentation head for the subclassification of mother and daughter cells during lifecycle transitions. YeastMate can be used directly as a Python library or through a standalone application with a graphical user interface (GUI) and a Fiji plugin as easy-to-use frontends. Availability and implementation The source code for YeastMate is freely available at https://github.com/hoerlteam/YeastMate under the MIT license. We offer installers for our software stack for Windows, macOS and Linux. A detailed user guide is available at https://yeastmate.readthedocs.io. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Research Council

Deutsche Forschungsgemeinschaft [SPP

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference12 articles.

1. A convolutional neural network segments yeast microscopy images with high accuracy;Dietler;Nat. Commun,2020

2. Functional profiling of the Saccharomyces cerevisiae genome;Giaever;Nature,2002

3. Global analysis of protein localization in budding yeast;Huh;Nature,2003

4. Cristae-dependent quality control of the mitochondrial genome;Jakubke;Sci. Adv,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3