ICARUS: flexible protein structural alignment based on Protein Units

Author:

Cretin Gabriel12ORCID,Périn Charlotte123,Zimmermann Nicolas12,Galochkina Tatiana12ORCID,Gelly Jean-Christophe12ORCID

Affiliation:

1. Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR , F-75015 Paris, France

2. Laboratoire d’Excellence GR-Ex , 75015 Paris, France

3. TBI, Université de Toulouse, CNRS, INRAE, INSA , 31077 Toulouse, France

Abstract

Abstract Motivation Alignment of protein structures is a major problem in structural biology. The first approach commonly used is to consider proteins as rigid bodies. However, alignment of protein structures can be very complex due to conformational variability, or complex evolutionary relationships between proteins such as insertions, circular permutations or repetitions. In such cases, introducing flexibility becomes useful for two reasons: (i) it can help compare two protein chains which adopted two different conformational states, such as due to proteins/ligands interaction or post-translational modifications, and (ii) it aids in the identification of conserved regions in proteins that may have distant evolutionary relationships. Results We propose ICARUS, a new approach for flexible structural alignment based on identification of Protein Units, evolutionarily preserved structural descriptors of intermediate size, between secondary structures and domains. ICARUS significantly outperforms reference methods on a dataset of very difficult structural alignments. Availability and implementation Code is freely available online at https://github.com/DSIMB/ICARUS.

Funder

Ministry of Research

National Institute for Blood Transfusion

National Institute for Health and Medical Research

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3