Automated segmentation and recognition of C. elegans whole-body cells

Author:

Li Yuanyuan1ORCID,Lai Chuxiao1,Wang Meng1,Wu Jun1,Li Yongbin2ORCID,Peng Hanchuan3ORCID,Qu Lei1345ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University , Hefei, Anhui 230039, China

2. College of Life Sciences, Capital Normal University , Beijing 100048, China

3. SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University , Nanjing, Jiangsu 210096, China

4. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center , Hefei, Anhui 230039, China

5. Hefei National Laboratory, University of Science and Technology of China , Hefei, Anhui 230039, China

Abstract

Abstract Motivation Accurate segmentation and recognition of C.elegans cells are critical for various biological studies, including gene expression, cell lineages, and cell fates analysis at single-cell level. However, the highly dense distribution, similar shapes, and inhomogeneous intensity profiles of whole-body cells in 3D fluorescence microscopy images make automatic cell segmentation and recognition a challenging task. Existing methods either rely on additional fiducial markers or only handle a subset of cells. Given the difficulty or expense associated with generating fiducial features in many experimental settings, a marker-free approach capable of reliably segmenting and recognizing C.elegans whole-body cells is highly desirable. Results We report a new pipeline, called automated segmentation and recognition (ASR) of cells, and applied it to 3D fluorescent microscopy images of L1-stage C.elegans with 558 whole-body cells. A novel displacement vector field based deep learning model is proposed to address the problem of reliable segmentation of highly crowded cells with blurred boundary. We then realize the cell recognition by encoding and exploiting statistical priors on cell positions and structural similarities of neighboring cells. To the best of our knowledge, this is the first method successfully applied to the segmentation and recognition of C.elegans whole-body cells. The ASR-segmentation module achieves an F1-score of 0.8956 on a dataset of 116 C.elegans image stacks with 64 728 cells (accuracy 0.9880, AJI 0.7813). Based on the segmentation results, the ASR recognition module achieved an average accuracy of 0.8879. We also show ASR’s applicability to other cell types, e.g. platynereis and rat kidney cells. Availability and implementation The code is available at https://github.com/reaneyli/ASR.

Funder

National Natural Science Foundation of China

Sci-Tech Innovation 2030 Agenda

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3