A fast and memory efficient MLCS algorithm by character merging for DNA sequences alignment

Author:

Liu Sen1,Wang Yuping1,Tong Wuning1,Wei Shiwei1

Affiliation:

1. School of Computer Science and Technology, Xidian University, Xi’an, China

Abstract

Abstract Motivation Multiple longest common subsequence (MLCS) problem is searching all longest common subsequences of multiple character sequences. It appears in many fields such as data mining, DNA alignment, bioinformatics, text editing and so on. With the increasing in sequence length and number of sequences, the existing dynamic programming algorithms and the dominant point-based algorithms become ineffective and inefficient, especially for large-scale MLCS problems. Results In this paper, by considering the characteristics of DNA sequences with many consecutively repeated characters, we first design a character merging scheme which merges the consecutively repeated characters in the sequences. As a result, it shortens the length of sequences considered and saves the space of storing all sequences. To further reduce the space and time costs, we construct a weighted directed acyclic graph which is much smaller than widely used directed acyclic graph for MLCS problems. Based on these techniques, we propose a fast and memory efficient algorithm for MLCS problems. Finally, the experiments are conducted and the proposed algorithm is compared with several state-of-the art algorithms. The experimental results show that the proposed algorithm performs better than the compared state-of-the art algorithms in both time and space costs. Availability and implementation https://www.ncbi.nlm.nih.gov/nuccore and https://github.com/liusen1006/MLCS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phylogeny Reconstruction Using $$k-mer$$ Derived Transition Features;Lecture Notes in Networks and Systems;2024

2. A Space-Saving Based MLCS Algorithm;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

3. SCARdock: A Web Server and Manually Curated Resource for Discovering Covalent Ligands;ACS Omega;2023-03-06

4. A Method for Bio-Sequence Analysis Algorithm Development Based on the PAR Platform;Big Data Mining and Analytics;2023-03

5. A distributed storage MLCS algorithm with time efficient upper bound and precise lower bound;Information Sciences;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3