AC-motif: a DNA motif containing adenine and cytosine repeat plays a role in gene regulation

Author:

Hur Jeong Hwan1,Kang Chan Young2,Lee Sungjin3,Parveen Nazia1,Yu Jihyeon2,Shamim Amen14,Yoo Wanki1,Ghosh Ambarnil1ORCID,Bae Sangsu2ORCID,Park Chin-Ju3ORCID,Kim Kyeong Kyu15ORCID

Affiliation:

1. Department of Precision Medicine, Graduate Schoold of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea

2. Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea

3. Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

4. Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan

5. Samsung Biomedical Research Institute, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea

Abstract

Abstract I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure ‘adenine:cytosine-motif (AC-motif)’. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson–Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.

Funder

Samsung Science and Technology Foundation

National Research Foundation of Korea

Korea Basic Science Institute

Ministry of Science and ICT, South Korea

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3