Genome-Wide Genetic Analysis of Dropout in a Controlled Exercise Intervention in Sedentary Adults With Overweight or Obesity and Cardiometabolic Disease

Author:

Jiang Rong1,Collins Katherine A23ORCID,Huffman Kim M24,Hauser Elizabeth R25,Hubal Monica J6,Johnson Johanna L2,Williams Redford B7,Siegler Ilene C7,Kraus William E24ORCID

Affiliation:

1. Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine , Durham, NC , USA

2. Duke Molecular Physiology Institute, Duke University School of Medicine , Durham, NC , USA

3. Department of Population Health Sciences, Duke University School of Medicine , Durham, NC , USA

4. Department of Medicine, Duke University Medical Center , Durham, NC , USA

5. Department of Biostatistics, Duke University School of Medicine , Durham, NC , USA

6. Department of Kinesiology, Indiana University Purdue University Indianapolis , Indianapolis, IN , USA

7. Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine , Durham, NC , USA

Abstract

Abstract Background Despite the benefits of exercise, many individuals are unable or unwilling to adopt an exercise intervention. Purpose The purpose of this analysis was to identify putative genetic variants associated with dropout from exercise training interventions among individuals in the STRRIDE trials. Methods We used a genome-wide association study approach to identify genetic variants in 603 participants initiating a supervised exercise intervention. Exercise intervention dropout occurred when a subject withdrew from further participation in the study or was otherwise lost to follow-up. Results Exercise intervention dropout was associated with a cluster of single-nucleotide polymorphisms with the top candidate being rs722069 (T/C, risk allele = C) (unadjusted p = 2.2 × 10−7, odds ratio = 2.23) contained within a linkage disequilibrium block on chromosome 16. In Genotype-Tissue Expression, rs722069 is an expression quantitative trait locus of the EARS2, COG7, and DCTN5 genes in skeletal muscle tissue. In subsets of the STRRIDE genetic cohort with available muscle gene expression (n = 37) and metabolic data (n = 82), at baseline the C allele was associated with lesser muscle expression of EARS2 (p < .002) and COG7 (p = .074) as well as lesser muscle concentrations of C2- and C3-acylcarnitines (p = .026). Conclusions Our observations imply that exercise intervention dropout is genetically moderated through alterations in gene expression and metabolic pathways in skeletal muscle. Individual genetic traits may allow the development of a biomarker-based approach for identifying individuals who may benefit from more intensive counseling and other interventions to optimize exercise intervention adoption. Clinical Trial information STRRIDE I = NCT00200993; STRRIDE AT/RT = NCT00275145; STRRIDE-PD = NCT00962962.

Funder

NIAMS

NHLBI

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3