Fate, inducibility, and behavior of Latilactobacillus curvatus temperate phage TMW 1.591 P1 during sausage fermentation

Author:

Ambros Conrad L1,Ehrmann Matthias A1ORCID

Affiliation:

1. Chair of Microbiology, Technical University of Munich (TUM), School of Life Sciences , 85354 Freising , Germany

Abstract

Abstract Aims Temperate phages insert their genome into the host’s chromosome. As prophages, they remain latent in the genome until an induction event leads to lytic phage production. When this occurs in a starter culture that has been added to food fermentation, this can impair the fermentation success. This study aimed to analyze prophage inducibility in the Latilactobacillus curvatus TMW 1.591 strain during meat fermentation and investigate whether an induction signal before cryopreservation is maintained during storage and can lead to phage-induced lysis after culture activation. Methods and results A prophage-free isogenic derivative of the model starter organism, L. curvatus TMW 1.591, was developed as a negative control (L. curvatus TMW 1.2406). Raw meat fermentation was performed with the wild-type (WT) and phage-cured strains. The WT strain produced high numbers of phages (5.2 ± 1.8 × 107 plaque-forming units g−1) in the meat batter. However, the prophage did not significantly affect the meat fermentation process. Induction experiments suggested an acidic environment as a potential trigger for prophage induction. Phage induction by ultraviolet light before strain cryopreservation remains functional for at least 10 weeks of storage. Conclusions Intact prophages are active during meat fermentation. However, in this study, this has no measurable consequences for fermentation, suggesting a high resiliency of meat fermentation against phages. Inadequate handling of lysogenic starter strains, even before preservation, can lead to phage introduction into food fermentation and unintended host lysis.

Funder

Industrial Collective Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3