Exposure of Salmonella enterica serovar 1,4,[5],12:i:- to benzalkonium chloride leads to acquired resistance to this disinfectant and antibiotics

Author:

Yang Mingzhe1,Dong Qingli1,Niu Hongmei1ORCID,Li Jiaming1,Lin Zijie1,Aslam Muhammad Zohaib1,Wang Xiang1,Li Zhuosi1,Liu Yangtai1,Ma Yue1,Qin Xiaojie1ORCID

Affiliation:

1. School of Health Science and Engineering, University of Shanghai for Science and Technology , Shanghai 200093 , China

Abstract

Abstract Aims Disinfectants such as benzalkonium chloride (BC), extensively used in animal farms and food-processing industries, contribute to the development of adaptive and cross-resistance in foodborne pathogens, posing a serious threat to food safety and human health. The purpose of this study is to explore whether continuous exposure of Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-) to sublethal concentrations of BC could result in acquired resistance to this agent and other environmental stresses (e.g. antibiotics, heat, and acid). Methods and Results BC tolerance increased in all tested strains after exposure to gradually increasing concentrations of BC, with increases in minimum inhibitory concentrations between two and sixfold. The survival rate of BC-adapted strains was significantly (P < 0.05) higher than that of their wild-type (non-adapted) counterparts in lethal concentrations of BC. In addition, significant reductions (P < 0.05) in zeta potential were observed in BC-adapted strains compared to wild-type ones, indicating that a reduction in cell surface charge was a cause of adaptative resistance. More importantly, two BC-adapted strains exhibited increased antibiotic resistance to levofloxacin, ceftazidime, and tigecycline, while gene mutations (gyrA, parC) and antibiotic efflux-related genes (acrB, mdsA, mdsB) were detected by genomic sequencing analysis. Moreover, the tolerance of BC-adapted strains to heat (50, 55, and 60°C) and acid (pH 2.0, 2.5) was strain-dependent and condition-dependent. Conclusions Repeated exposure to sublethal concentrations of BC could result in the emergence of BC- and antibiotic-resistant S. 1,4,[5],12:i:- strains.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3