Liposomal chrysin attenuates hepatic ischaemia-reperfusion injury: possible mechanism via inhibiting NLRP3 inflammasome

Author:

Huang Rui1,Zhao Zizuo1,Jiang Xujie23,Li Weiwei1,Zhang Lidan1,Wang Bin1,Tie Hongtao4ORCID

Affiliation:

1. Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

2. Department of Pharmacology, Chongqing Medical University, Chongqing, China

3. Department of Anesthesiology, Chengdu Fifth People’s Hospital, Chengdu, China

4. Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract

Abstract Objectives The chrysin has properties of low aqueous solubility, bioavailability and absorption, and its effect on hepatic ischaemia-reperfusion (HIR) remains unclear. Thus, we prepared a liposomal chrysin (LC) and explored its effect and potential mechanism on HIR. Methods A thin-film dispersion method was used to prepare LC, and a mouse HIR model was used. Mice were pre-treated with LC (100 mg/kg) or placebo by gavage feeding at 16.5 h, 8.5 h, 0.5 h before modelling. Results The average particle sizes, polydispersity index, zeta potential, encapsulation efficiency and drug loading of LC were 129 ± 13.53 nm, 0.265 ± 0.021, −34.46 ± 4.14 mV, 95.03 ± 2.17%, 16.4 ± 0.8%. The concentration of chrysin in plasma and liver tissue by LC administration increased 2.54 times and 1.45 times. LC pre-treatment reduced HIR-induced liver injury and inhibited cell apoptosis. Besides, LC pre-treatment decreased reactive oxygen species and malondialdehyde and inhibited the inflammation response indicated by lower IL-6, TNF-α, infiltration of neutrophils. Further, LC pre-treatment significantly decreased NLRP3 activation, evidenced by reduced cleaved caspase-3, NLRP3, ASC, cleaved caspase-1 and IL-1β expression. Conclusions LC has good biocompatibility, and it could attenuate HIR-induced injury. Its mechanism was associated with NLRP3 inflammasome inhibition, and LC might be an effective drug for treating and preventing HIR-induced injury.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3