Controls on the Emplacement Style of Coherent Kimberlites in the Lac de Gras Field, Canada

Author:

Tovey Madeline1,Giuliani Andrea2,Phillips David1,Nowicki Tom3,Pearson D Graham4,Fedortchouk Yana5,Russell James K6

Affiliation:

1. University of Melbourne Kimberlites and Diamonds (KiDs), School of Geography, Earth and Atmospheric Sciences, , Parkville, Melbourne, VIC 3010, Australia

2. ETH Zurich Institute of Geochemistry and Petrology, Department of Earth Sciences, , Clausiusstrasse 25, Zurich 8092, Switzerland

3. Mineral Services Canada Inc. , 501-88 Lonsdale Av, North Vancouver, BC V7M 2EL, Canada

4. University of Alberta Department of Earth and Atmospheric Sciences, , Edmonton, AB T6G 2E3, Canada

5. Dalhousie University Department of Earth Sciences, , Halifax, NS B3H 4R2, Canada

6. University of British Colombia Volcanology and Petrology Laboratory, Department of Earth, Ocean and Atmospheric Sciences, , Vancouver, BC V6T 1Z4, Canada

Abstract

Abstract In the Lac de Gras (LDG) kimberlite field, Northwest Territories, Canada, coherent kimberlites (CKs) occur as tabular dykes, pipe-shaped diatremes, and irregular bodies without well-defined geometries. Combining the morphology of CK bodies with the occurrence of fragmented olivine microcrysts allows distinction of four CK types at LDG: (1) dykes with no broken olivine; (2) CK without well-defined but probable sheet geometry and no broken olivine; (3) pipe-filling CK (pfCK) with abundant broken olivine and (4) pfCK with no broken olivine. These features suggest an intrusive origin for type 1 and, probably, type 2 CK; a high-energy extrusive emplacement for CK type 3 and a low-energy intrusive or extrusive emplacement for the CK type 4. Here, we compare petrographic and whole-rock, olivine and spinel compositional data for high-energy extrusive pfCK, low-energy pfCK and intrusive CK units to understand the factors controlling their variable emplacement styles. Extrusive CK contain more abundant groundmass phlogopite and monticellite, lower carbonate/silicate mineral abundance ratios and significantly lower dolomite and pleonaste-spinel abundances compared to intrusive CK. This indicates greater CO2 loss and higher H2O/CO2 in the melt phase for the extrusive CK during emplacement. Lower incompatible element concentrations in the extrusive CKs and different chromite Ti# and olivine rim Mg# indicate derivation from distinct primitive melt compositions. The extrusive CK feature higher ɛNdi and marginally higher ɛHfi compositions than the intrusive CK, pointing to derivation from distinct sources. These findings strongly imply that distinct primary melt compositions were largely responsible for the differences in emplacement styles of CK at LDG. Low-energy pfCKs have similar olivine rim Mg#, chromite Ti# and, hence, primitive melt compositions to the high-energy extrusive CK samples. Their marginally different emplacement styles may depend on local factors, such as changing stress regimes, or slightly different volatile concentrations. Both types of pfCK might reflect the waning stages of volcanic sequences resulting from the eruption of a segregated magma column that started with pipe excavation and the explosive emplacement of gas-rich magma (volcaniclastic kimberlite), followed by the less energetic emplacement of melt-rich magma (pfCK). This hypothesis underscores different primary melt compositions for dyke vs pipe-forming (and filling) kimberlites and hence a fundamental primary melt control on the explosivity of kimberlites.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference116 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3