Cumulate Formation and Melt Extraction from Mush-Dominated Magma Reservoirs: The Melt Flush Process Exemplified at Mid-Ocean Ridges

Author:

Boulanger Marine12ORCID,France Lydéric13ORCID

Affiliation:

1. Université de Lorraine, CNRS, CRPG , F-54000 Nancy, France

2. Université Clermont Auvergne Laboratoire Magmas et Volcans, CNRS-OPGC-IRD, , France

3. Institut Universitaire de France (IUF) , France

Abstract

Abstract Volcanism is the surface expression of extensive magmatic systems, with their intrusive counterpart representing ~80% of the total magma budget. Our knowledge of igneous processes therefore largely relies on our understanding of deep plutonic processes. In continental or oceanic environments, most of the intrusive igneous rocks bear geochemical cumulate signatures (e.g. depletion in incompatible elements and enrichment in compatible ones) that are commonly explained by mineral-melt segregation during differentiation. Deformation-assisted compaction aided by melt buoyancy is usually referred to as the main process involved in melt extraction. However, buoyancy alone is not sufficient, and a number of cumulative rocks are lacking any compaction evidence, opening the potential for the involvement of other processes. In addition, our view of magmatic systems has shifted in the last decades from large melt-rich bodies to crystal-rich magma reservoirs. This paradigm shift challenges some of the long-established first-order igneous concepts like the idea that melt differentiation at depth is mainly governed by (fractional) crystallization; alternatively, the presence of mush potentially favors additional processes such as melt-mush reactions. We propose a novel igneous process for the formation of igneous cumulates, consistent with the mushy nature of oceanic igneous reservoirs, their continuous/cyclic replenishment by primitive melts, and the widespread occurrence of reactive porous flow (RPF) during magma differentiation identified in a growing number of magmatic systems. The melt flush process relies on melt-mush reactions between the primitive recharge melt(s) and crystal mush. Replacement of the more evolved interstitial melt by the primitive recharge melt leading to reactions (dissolution+crystallization) and concomitant extraction of the more evolved melt from the cumulate by buoyancy participate in the acquisition of the final cumulate signature. This process relying on oceanic igneous systems considers for the first time melt inputs and not only melt extraction and matches the petrographic (e.g. mineral dissolution evidence) and geochemical constraints (trace element signatures) brought by natural oceanic samples. We tested various melt-mush reactions likely involved in the early stages of the melt flush process during RPF to investigate their thermodynamic feasibility with the Magma Chamber Simulator. First-order results show that one-step equilibration of primitive melts with primitive to moderately differentiated mush crystals triggers mineral assimilation. Together with the constraints established from the natural rock record, it strengthens the idea that RPF is a potential key process for magma differentiation in magma reservoirs at different evolution stages. The proposed melt flush process eventually adds to other processes involved in cumulate formation like magma compaction or crystal settling and is likely to apply to any other magmatic system from various settings sharing similar reservoir characteristics.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3