Neoproterozoic Eclogite-to Granulite-Facies Transition in the Ubendian Belt, Tanzania, and the Timescale of Continental Collision

Author:

Morita Isamu1,Tsujimori Tatsuki123,Boniface Nelson4,Flores Kennet E235,Aoki Shogo67,Aoki Kazumasa7

Affiliation:

1. Department of Earth Science, Tohoku University, Aoba, Sendai 980-8578, Japan

2. Center for Northeast Asia Studies, Tohoku University, Aoba, Sendai 980-8576, Japan

3. Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192, USA

4. Department of Geology, University of Dar es Salaam, P.O. Box 35052, Dar es Salaam, Tanzania

5. Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3315, USA

6. Graduate School of International Resource Sciences, Akita University, Akita 010-8502, Japan

7. Center for Fundamental Education, Okayama University of Science, Okayama 700-0005, Japan

Abstract

AbstractIn collision-type orogens, where high-pressure and ultrahigh-pressure (HP–UHP) metamorphism usually occurs, deeply subducted continental slabs with eclogitized mafic rocks often undergo recrystallization/overprinting with various geothermal gradients after the peak conditions at lower-to-middle-crustal levels. During the crustal stabilization, the transition from eclogite-to granulite-facies is common. We conducted metamorphic petrology and zircon geochronology on (1) bimineralic and (2) partially granulitized eclogites from the Neoproterozoic Ufipa Terrane (Southwestern Tanzania). Microtextural relationships and mineral chemistry define three metamorphic stages: eclogite metamorphism (M1), HP granulite-facies overprinting (M2), and amphibolite-facies retrogression (M3). The bimineralic eclogite has a basaltic composition and lacks M2 minerals. In contrast, the kyanite eclogite is characterized by a gabbro-dioritic whole-rock composition and contains inherited magmatic zircon. Although the matrix is highly granulitized, garnet and kyanite contain eclogite-facies mineral inclusions. Phase equilibria modeling revealed P–T conditions of 2.1–2.6 GPa and 650–860°C for the M1 stage and 1.4–1.6 GPa and 750–940°C for the M2 stage. Zircon with eclogite-facies mineral inclusions from the bimineralic eclogite lacks Eu anomaly in the REE patterns and yielded the M1 eclogite metamorphic age of 588 ± 3 Ma. Zircon overgrowths surrounding the inherited Paleoproterozoic magmatic cores in kyanite eclogite yielded 562 ± 3 Ma. A weak negative Eu anomaly in the REE patterns and the absence of eclogitic mineral inclusions suggest the zircon growths at the M2 HP granulite-facies metamorphic stage. These new data indicate an eclogite-to granulite-facies transition time of 26 ± 4 million years (Myr), suggesting a rate of HP rock exhumation toward a lower crustal level of 0.7–1.5 mm/year. Furthermore, the density evolution model indicates that buoyant host orthogneiss with low-density gabbro-dioritic eclogite plays an important role in carrying high-density basaltic eclogite. Our 2D thermomechanical modeling also suggests that a slab break-off with a lower angle subduction of <20° triggers the exhumation of the HP slab sliver with 20–30 Myr eclogite-to granulite transition time of large HP–UHP terranes in major collision zones.

Funder

Okayama University of Science

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3