Traumatic injury is associated with reduced deoxyribonuclease activity and dysregulation of the actin scavenging system

Author:

Hazeldine Jon12ORCID,Dinsdale Robert J13,Naumann David N24,Acharjee Animesh25ORCID,Bishop Jonathan R B2,Lord Janet M123,Harrison Paul13

Affiliation:

1. Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom

2. National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Heritage Building, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom

3. Scar Free Foundation Birmingham Centre for Burns Research, University Hospital Birmingham Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom

4. Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom

5. Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom

Abstract

Abstract Background Traumatic injury is associated with increased concentrations of cell-free DNA (cfDNA) in the circulation, which contribute to post-injury complications. The endonuclease deoxyribonuclease 1 (DNase-1) is responsible for removing 90% of circulating cfDNA. Recently, DNase activity was reported to be significantly reduced following major non-traumatic brain injury (TBI), but the processes responsible were not investigated. Moreover, it is not known how quickly following injury DNase activity is reduced and whether this also occurs after TBI. Methods At 3 post-injury time points (≤1, 4–12 and 48–72 hours), blood samples were obtained from 155 adult trauma patients that had sustained an isolated TBI (n = 21), TBI with accompanying extracranial injury (TBI+) (n = 53) or an extracranial injury only (ECI) (n = 81). In addition to measuring cfDNA levels and the activity and expression of DNase, circulating concentrations of monomeric globular action (G-actin), an inhibitor of DNase-1, and the actin scavenging proteins gelsolin (GSN) and vitamin D binding protein (VDBP) were determined and values compared to a cohort of healthy controls. Results Significantly elevated concentrations of plasma cfDNA were seen in TBI, TBI+ and ECI patients at all study time points when compared to healthy controls. cfDNA levels were significantly higher at ≤1 hour post-injury in ECI patients who subsequently developed multiple organ dysfunction syndrome when compared to those who did not. Plasma DNase-1 protein was significantly elevated in all patient groups at all sampling time points. In contrast, DNase enzyme activity was significantly reduced, with this impaired function evident in TBI+ patients within minutes of injury. Circulating concentrations of G-actin were elevated in all patient cohorts in the immediate aftermath of injury and this was accompanied by a significant reduction in the levels of GSN and VDBP. Conclusions The post-traumatic increase in circulating cfDNA that occurs following extracranial trauma and TBI is accompanied by reduced DNase activity. We propose that, secondary to reduced GSN and VDBP levels, elevated circulating concentrations of G-actin underlie the post-injury reduction in DNase activity. Reducing circulating cfDNA levels via therapeutic restoration of DNase-1 activity may improve clinical outcomes post-injury.

Funder

National Institute for Health Research

Surgical Reconstruction and Microbiology Research Centre and the Scar Free Foundation

NIHR Birmingham Biomedical Research Centre and the Medical Research Council

Versus Arthritis Centre for Musculoskeletal Ageing Research

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3