Mismatch repair systems might facilitate the chromosomal recombination induced by N-nitrosodimethylamine, but not by N-nitrosodiethylamine, in Drosophila

Author:

Negishi Tomoe12,Yamada Kenji1,Miyamoto Keiko3,Mori Emiko1,Taira Kentaro1,Fujii Asei3,Goto Yuki1,Arimoto-Kobayashi Sakae1,Okamoto Keinosuke1

Affiliation:

1. Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan

2. Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Ina, Kita-Adachi-gun, Saitama, Japan

3. Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan

Abstract

Abstract Mismatch repair (MMR) systems play important roles in maintaining the high fidelity of genomic DNA. It is well documented that a lack of MMR increases the mutation rate, including base exchanges and small insertion/deletion loops; however, it is unknown whether MMR deficiency affects the frequency of chromosomal recombination in somatic cells. To investigate the effects of MMR on chromosomal recombination, we used the Drosophila wing-spot test, which efficiently detects chromosomal recombination. We prepared MMR (MutS)-deficient flies (spel1(−/−)) using a fly line generated in this study. The spontaneous mutation rate as measured by the wing-spot test was slightly higher in MutS-deficient flies than in wild-type (spel1(+/−)) flies. Previously, we showed that N-nitrosodimethylamine (NDMA)-induced chromosomal recombination more frequently than N-nitrosodiethylamine (NDEA) in Drosophila. When the wing-spot test was performed using MMR-deficient flies, unexpectedly, the rate of NDMA-induced mutation was significantly lower in spel1(−/−) flies than in spel1(+/−) flies. In contrast, the rate of mutation induced by NDEA was higher in spel1(−/−) flies than in spel1(+/−) flies. These results suggest that in Drosophila, the MutS homologue protein recognises methylated DNA lesions more efficiently than ethylated ones, and that MMR might facilitate mutational chromosomal recombination due to DNA double-strand breaks via the futile cycle induced by MutS recognition of methylated lesions.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Genetics (clinical),Toxicology,Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3