Large alphabet inference

Author:

Painsky Amichai1ORCID

Affiliation:

1. Department of Industrial Engineering, Tel Aviv University , Israel , 6997801

Abstract

Abstract Consider a finite sample from an unknown multinomial distribution. Inferring the underlying multinomial parameters is a basic problem in statistics and related fields. Currently known methods focus on classical regimes where the sample is large, or both the sample and the alphabet are small. In this work we study the complementary large alphabet regime, as we consider the case where the number of samples is comparable with (or even smaller than) the alphabet size. We introduce a novel inference scheme that significantly improves upon currently known methods. Our proposed scheme is robust, easy to apply and provides favourable performance guarantees.

Funder

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference43 articles.

1. Improved bounds for minimax risk of estimating missing mass;Acharya,2018

2. Confidence regions for the multinomial parameter with small sample size;Chafai;J. Am. Stat. Assoc.,2009

3. An empirical study of smoothing techniques for language modeling;Chen;Comput. Speech Lang.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3