Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros

Author:

López Oscar F1,Dunlavy Daniel M2,Lehoucq Richard B3

Affiliation:

1. Florida Atlantic University Harbor Branch Oceanographic Institute, , 5600 US 1 North, 34946 Florida , USA

2. Sandia National Laboratories Machine Intelligence and Visualization, , 1515 Eubank SE, 87123 New Mexico , USA

3. Sandia National Laboratories Discrete Math and Optimization, , 1515 Eubank SE, 87123 New Mexico , USA

Abstract

Abstract We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\boldsymbol{\mathscr{M}}\in (0,\infty )^{I\times \cdots \times I}$ generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately $IR^2\log _2^2(I)$ non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.

Funder

Sandia National Laboratories

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference54 articles.

1. Unsupervised multiway data analysis: a literature survey;Acar;IEEE Trans. Knowl. Data Eng.,2009

2. A survey of text clustering algorithms;Aggarwal,2012

3. Tensor toolbox for MATLAB;Bader,2021

4. The analysis of count data: overdispersion and autocorrelation;Barron;Sociol. Methodol.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3