Covariate shift in nonparametric regression with Markovian design

Author:

Trottner Lukas1

Affiliation:

1. Department of Mathematics, Aarhus University , Ny Munkegade 118, 8000 Aarhus , Denmark

Abstract

Abstract Covariate shift in regression problems and the associated distribution mismatch between training and test data is a commonly encountered phenomenon in machine learning. In this paper, we extend recent results on nonparametric convergence rates for i.i.d. data to Markovian dependence structures. We demonstrate that under Hölder smoothness assumptions on the regression function, convergence rates for the generalization risk of a Nadaraya–Watson kernel estimator are determined by the similarity between the invariant distributions associated to source and target Markov chains. The similarity is explicitly captured in terms of a bandwidth-dependent similarity measure recently introduced in Pathak, Ma and Wainwright [ICML, 2022]. Precise convergence rates are derived for the particular cases of finite Markov chains and spectral gap Markov chains for which the similarity measure between their invariant distributions grows polynomially with decreasing bandwidth. For the latter, we extend the notion of a distribution transfer exponent from Kpotufe and Martinet [Ann. Stat., 49(6), 2021] to kernel transfer exponents of uniformly ergodic Markov chains in order to generate a rich class of Markov kernel pairs for which convergence guarantees for the covariate shift problem can be formulated.

Funder

Carlsberg Foundation Young Researcher Fellowship

Publisher

Oxford University Press (OUP)

Reference34 articles.

1. A theory of learning from different domains;Ben-David;Mach. Learn.,2010

2. Every “lower psi-mixing” Markov chain is “interlaced rho-mixing”;Bradley;Stochastic Process. Appl.,1997

3. A causal framework for distribution generalization;Christiansen;IEEE Trans. Patt. Anal. Mach. Intell.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3