On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it

Author:

García Trillos Camilo Andrés1,García Trillos Nicolás2

Affiliation:

1. University College London Department of Mathematics, , Gower Street, London WC1E 6BT, UK

2. University of Wisconsin Madison Department of Statistics, , 1300 University Avenue, Madison, WI 53706, USA

Abstract

Abstract We propose iterative algorithms to solve adversarial training problems in a variety of supervised learning settings of interest. Our algorithms, which can be interpreted as suitable ascent-descent dynamics in Wasserstein spaces, take the form of a system of interacting particles. These interacting particle dynamics are shown to converge toward appropriate mean-field limit equations in certain large number of particles regimes. In turn, we prove that, under certain regularity assumptions, these mean-field equations converge, in the large time limit, toward approximate Nash equilibria of the original adversarial learning problems. We present results for non-convex non-concave settings, as well as for non-convex concave ones. Numerical experiments illustrate our results.

Funder

NSF-DMS (grants to N.G.T.); IFDS at UW-Madison and NSF

IFDS at UW-Madison and NSF

Publisher

Oxford University Press (OUP)

Reference55 articles.

1. On the existence of the adversarial Bayes classifier;Awasthi;Adv. Neural Inf. Process. Syst.,2021

2. Lower bounds on adversarial robustness from optimal transport;Bhagoji,2019

3. Robust Wasserstein profile inference and applications to machine learning;Blanchet;J. Appl. Probab.,2019

4. Statistical analysis of wasserstein distributionally robust estimators;Blanchet,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3