Affiliation:
1. Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA
2. Department of Mathematical Sciences, University of Delaware, Newark, DE
Abstract
Abstract
Maximum likelihood estimation in phylogenetics requires a means of handling unknown ancestral states. Classical maximum likelihood averages over these unknown intermediate states, leading to provably consistent estimation of the topology and continuous model parameters. Recently, a computationally efficient approach has been proposed to jointly maximize over these unknown states and phylogenetic parameters. Although this method of joint maximum likelihood estimation can obtain estimates more quickly, its properties as an estimator are not yet clear. In this article, we show that this method of jointly estimating phylogenetic parameters along with ancestral states is not consistent in general. We find a sizeable region of parameter space that generates data on a four-taxon tree for which this joint method estimates the internal branch length to be exactly zero, even in the limit of infinite-length sequences. More generally, we show that this joint method only estimates branch lengths correctly on a set of measure zero. We show empirically that branch length estimates are systematically biased downward, even for short branches.
Funder
National Institutes of Health
National Science Foundation
Howard Hughes Medical Institute
Simons Foundation
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献