GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects

Author:

Laine Elodie1,Karami Yasaman12,Carbone Alessandra13ORCID

Affiliation:

1. Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France

2. Sorbonne Université, Institut du Calcul et de la Simulation, Sorbonne Université, Paris, France

3. Institut Universitaire de France, Paris, France

Abstract

Abstract The systematic and accurate description of protein mutational landscapes is a question of utmost importance in biology, bioengineering, and medicine. Recent progress has been achieved by leveraging on the increasing wealth of genomic data and by modeling intersite dependencies within biological sequences. However, state-of-the-art methods remain time consuming. Here, we present Global Epistatic Model for predicting Mutational Effects (GEMME) (www.lcqb.upmc.fr/GEMME), an original and fast method that predicts mutational outcomes by explicitly modeling the evolutionary history of natural sequences. This allows accounting for all positions in a sequence when estimating the effect of a given mutation. GEMME uses only a few biologically meaningful and interpretable parameters. Assessed against 50 high- and low-throughput mutational experiments, it overall performs similarly or better than existing methods. It accurately predicts the mutational landscapes of a wide range of protein families, including viral ones and, more generally, of much conserved families. Given an input alignment, it generates the full mutational landscape of a protein in a matter of minutes. It is freely available as a package and a webserver at www.lcqb.upmc.fr/GEMME/.

Funder

LabEx CALSIMLAB

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference78 articles.

1. Evolving new protein–protein interaction specificity through promiscuous intermediates;Aakre;Cell,2015

2. A method and server for predicting damaging missense mutations;Adzhubei;Nat Methods,2010

3. Gapped blast and psi-blast: a new generation of protein database search programs;Altschul;Nucleic Acids Res,1997

4. Escape of HIV-1 from a small molecule CCR5 inhibitor is not associated with a fitness loss;Anastassopoulou;PLoS Pathog,2007

5. Representation of protein-sequence information by amino acid subalphabets;Andersen;AI Mag,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3